Monte-Carlo Simulation of Solar Active-Region Energy
نویسندگان
چکیده
A Monte-Carlo approach to solving a stochastic jump transition model for active-region energy (Wheatland and Glukhov, Astrophys. J. 494, 1998; Wheatland, Astrophys. J. 679, 2008) is described. The new method numerically solves the stochastic differential equation describing the model, rather than the equivalent master equation. This has the advantages of allowing more efficient numerical solution, the modelling of time-dependent situations, and investigation of details of event statistics. The Monte-Carlo approach is illustrated by application to a Gaussian test case, and to the class of flare-like models presented in Wheatland (2008), which are steady-state models with constant rates of energy supply, and power-law distributed jump transition rates. These models have two free parameters: an index (δ), which defines the dependence of the jump transition rates on active-region energy, and a non-dimensional ratio (r) of total flaring rate to rate of energy supply. For r ! 1 the non-dimensional mean energy 〈E〉 of the active-region satisfies 〈E〉 $ 1, resulting in a power-law distribution of flare events over many decades in energy. The Monte-Carlo method is used to explore the behavior of the waiting-time distributions for the flare-like models. The models with δ %= 0 are found to have waiting times which depart significantly from simple Poisson behavior when 〈E〉 $ 1. The original model from Wheatland and Glukhov (1998), with δ = 0 (no dependence of transition rates on active-region energy), is identified as being most consistent with observed flare statistics.
منابع مشابه
Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملEnergy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations
The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...
متن کاملOptimal Scheduling of Battery Energy Storage System in Distribution Network Considering Uncertainties using hybrid Monte Carlo- Genetic Approach
This paper proposes a novel hybrid Monte Carlo simulation-genetic approach (MCS-GA) for optimal operation of a distribution network considering renewable energy generation systems (REGSs) and battery energy storage systems (BESSs). The aim of this paper is to design an optimal charging /discharging scheduling of BESSs so that the total daily profit of distribution company (Disco) can be maximiz...
متن کاملEconomic optimization of solar systems in uncertain economic conditions using the Monte Carlo method
Solar energy is an environmentally sustainable energy source as it is clean and inexhaustible. Solar systems are very common and cost-effective, thus, can be used for many home applications. In this paper, a new method is presented to optimize solar systems economically, regarding to energy cost fluctuations. In spite of conventional analyses, in which the inflation is considered constant, ...
متن کاملHydration energy of Adenine, Guanine, Cytosine and Thymine : Monte Carlo simulation
The hydration of biomolecules is vitally important in molecular biology, so in this paper thesolvation energy and radial distribution function of DNA bases have been calculated by theMonte Carlo simulation.The geometries of isolated Adenine, Guanine, Cytosine, and Thyminehave been optimized using 6-31+G(d,p) basis function sets. These geometries then will be used inthe Monte Carlo calculation o...
متن کامل